
Zeroes and Poles of Zeta functions

The following is a “baby” version of the classic argument of Hadmard
and de la Vallée Poussin, later generalized by Deligne in his second proof of
the Weil conjectures.

Let (αi) and (βi) be two finite sequences of complex numbers, with αi 6=
βj for all i and j. Let

Z(T ) :=
∏ 1− αiT

1− βiT
.

Let

f(T ) :=
TZ ′(T )
Z(T )

=
∑

i

(
βiT

1− βiT
− αiT

1− αiT
).

Then
f(T ) =

∑
n≥1

anT
n, where an =

∑
i

βn
i − αn

i .

Let b : max(|βi|) and a := max(|αi|).
Theorem: Suppose an ≥ 0 for all n. Then b ≥ a. Furthermore, if r is

the cardinality of the set of i with αi = b and s is the cardinality of the set
of i with |βi| = b, then r ≤ s. If s = 1 and |βi| = b, then in fact βi = b. In
this case if also r = 1, and |αj | = b, then αj = −b.

Lemma: Let (λ1, . . . , λr) be a finite sequence of complex numbers of ab-
solute value 1. Then there exists an increasing sequence of natural numbers
(nk) such that (λnk

i ) tends to 1 for all i.
Proof: The set of λ := (λ1, . . . , λr) is a compact topological space,

namely (S1)r. Hence the sequence (λm) has a convergent subsequence (mj).
This sequence is Cauchy. So for every number i, there is a number Ki such
that

||λmj − λmk || < 1/i,

whenever j and k are at least Ki, (where || || means for example the sup
norm). Then ||λmj−mk − 1|| < 1/i for j, k ≥ Ki. In particular, if n1 :=
mK1+1 −mK1 , then ||λn1 − 1|| < 1. Suppose that n1 < n2 < · · · < ni have
been chosen so that ||λnj − 1|| < 1/j for j ≤ i. Let

ni+1 := mKi+1+ni+1 −mKi+1 .

Then ni+1 > ni and ||λni+1 − 1|| < 1/(i+ 1). Thus we have constructed the
desired sequence by induction.
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To prove the theorem, let m := max(a, b). We assume that m > 0, and
dividing by m, we may assume that m = 1. Let r be the number of i such
that αi = m and s the number of i such that βi = m. Then for all k,

ank
=

∑
i

βnk
i − α

nk
i ≥ 0.

Taking the limit as k tends to infinity, we see that each term converges to
zero except for those with absolute value 1, which converge to 1. Hence the
limit of ank

is s− r. This implies that s− r ≥ 0, hence that b ≥ a.
Now suppose that s = 1 and |β1| = b. Again we assume without of

generality that b = 1. Assume first that r = 0. We have an = βn
1 + εn,

where εn tends to zero. By the lemma we find a sequence (nk) such that βnk
1

converge to 1. Then βnk+1 converges to β and hence ank+1 = βnk+1 + εnk+1

converges to β. Since ank+1 is always real and nonnegative it follows that β
is also. Hence β = b. Now suppose that r = 1. By a similar argument, we
find a sequence (nk) such that αnk

1 and βnk
1 converge to 1. Then

ank+1 = βnk+1 − αnk+1 + εnk+1

converges to β − α and

ank+2 = βnk+2 − αnk+2 + εnk+2

converges to β2−α2. It follows that β−α and β2−α2 are real and nonneg-
ative. Hence β + α is also real, and hence α and β are real. Thus β and α
are both plus or minus 1, and α = −β. Since β ≥ α, it is β that is positive.

Corollary Let X/Fq be a smooth, proper, and geometrically connected
curve of genus g. Let an be the number of Fqn-valued points of X/Fq. Then
|αi| < q for all i, and there exists an r < 1 such that

|an − (qn + 1)| ≤ 2gqnr

for all n ≥ 1.
Proof: We know that an = 1 + qn −

∑
αn

i for all n ≥ 1. The theorem
says that all |αi| are less than |q|, except for the possibility that for one i,
αi = −q. But we know this can’t happen—by making a base change to Fq2 ,
for example. Hence |αi| < q for all i. The result follows.

Corollary Let π:X → Y be a separable morphism of degree 2 of smooth
projective curves over PFp. For each n let a+

n be the cardinality of the set of
y ∈ Y (Fn

q ) with two inverse images in X(Fqn) and let a−n be the cardinality
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of the set of y with no inverse images, and let an be the cardinality of the
set of all points in Y (Fqn). Then

lim
a+

n

an
= lim

a−n
an

= 1/2.

Proof: Let an(X) be the cardinaliy of X(Fqn). For each y ∈ Y (Fqn , let
cy be the cardinlaity of π−1(y). Then cy ∈ {0, 1, 2}. Furthermore cy = 1 if
and only if y is ramified, and the total number a0

n of such points is uniformly
bounded. Hence:

an(X) =
∑
y

cy =
∑
y

(cy − 1) + an(Y ) = a+
n − a−n + an(Y )

Write an(X) = qn + εn(X) and an(Y ) = qn + εn(Y ). Then

a+
n − a−n = εn(X)− εn(Y ) and

a+
n + a−n = an(Y ) + a0

n.

Our estimates imply that εn(X)/an(Y ) and εn(Y )/an(Y ) tend to zero with
n, where εn means either εn(X) or εn(Y ). Moreover a0

n is bounded. It
follows that

lim
a+

n − a−n
an

= 0 and lim
a+

n + a−n
an

= 1.

The theorem follows.
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