Zeroes and Poles of Zeta functions

The following is a “baby” version of the classic argument of Hadmard
and de la Vallée Poussin, later generalized by Deligne in his second proof of
the Weil conjectures.

Let (o) and (f3;) be two finite sequences of complex numbers, with a; #
B; for all i and j. Let
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f(T) = Z a, ", where a, = Zﬂz" —aj.
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Let b : max(|3;]) and a := max(|a;|).

Theorem: Suppose a, > 0 for all n. Then b > a. Furthermore, if r is
the cardinality of the set of ¢ with «; = b and s is the cardinality of the set
of i with |3;| = b, then r < s. If s =1 and |3;| = b, then in fact 5; = b. In
this case if also r = 1, and || = b, then a; = —b.

Lemma: Let (A1, ..., Ar) be a finite sequence of complex numbers of ab-
solute value 1. Then there exists an increasing sequence of natural numbers
(nk) such that (\;*) tends to 1 for all .

Proof: The set of A := (A1,...,\;) is a compact topological space,
namely (S')". Hence the sequence (A\™) has a convergent subsequence (m;).
This sequence is Cauchy. So for every number 4, there is a number K; such
that

[IN™ = AT < 1/4

whenever j and k are at least Kj;, (where || || means for example the sup
norm). Then |[A"~™k — 1|| < 1/i for j,k > K;. In particular, if n; :=
M, +1 — Mk, , then ||\ — 1|| < 1. Suppose that n; < ny < --- < n; have
been chosen so that ||\ — 1|| < 1/j for j <. Let

Ni41 = mKi+1+ni+1 - mKi+1'

Then nit1 > n; and ||[A\"+ —1|| < 1/(i + 1). Thus we have constructed the
desired sequence by induction.



To prove the theorem, let m := max(a,b). We assume that m > 0, and
dividing by m, we may assume that m = 1. Let r be the number of ¢ such
that a; = m and s the number of ¢ such that 8; = m. Then for all &,

ny, = > B — o > 0.
i

Taking the limit as k£ tends to infinity, we see that each term converges to
zero except for those with absolute value 1, which converge to 1. Hence the
limit of ay, is s —r. This implies that s —r > 0, hence that b > a.

Now suppose that s = 1 and |1] = b. Again we assume without of
generality that b = 1. Assume first that » = 0. We have a,, = (7 + €,
where €, tends to zero. By the lemma we find a sequence (ny) such that 37"
converge to 1. Then 31! converges to 8 and hence an, +1 = 3% +€,, 11
converges to 3. Since ay, 41 is always real and nonnegative it follows that 3
is also. Hence 8 = b. Now suppose that r = 1. By a similar argument, we
find a sequence (ny) such that o* and ;" converge to 1. Then

ank+1 + Enk+1

converges to 3 — a and
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converges to 32 — 2. It follows that 3 — « and 3% — o are real and nonneg-
ative. Hence 3 + « is also real, and hence o and 3 are real. Thus § and «
are both plus or minus 1, and o = —§. Since 8 > «, it is § that is positive.

Corollary Let X/F, be a smooth, proper, and geometrically connected
curve of genus g. Let a,, be the number of Fjn-valued points of X/F,. Then
|a;| < g for all i, and there exists an r < 1 such that

lan — (¢" +1)] < 29¢™"

for all n > 1.

Proof: We know that a, = 1+ ¢" — > o for all n > 1. The theorem
says that all || are less than |g|, except for the possibility that for one 4,
a; = —q. But we know this can’t happen—by making a base change to F g,
for example. Hence |a;| < ¢ for all i. The result follows.

Corollary Let m: X — Y be a separable morphism of degree 2 of smooth
projective curves over PF,. For each n let a;} be the cardinality of the set of
y € Y(F}) with two inverse images in X (Fg») and let a,, be the cardinality



of the set of y with no inverse images, and let a,, be the cardinality of the
set of all points in Y (Fgn). Then

Proof: Let a,(X) be the cardinaliy of X (F ;). For each y € Y(Fn, let
¢y be the cardinlaity of 7=!(y). Then ¢, € {0,1,2}. Furthermore ¢, = 1 if
and only if y is ramified, and the total number a of such points is uniformly
bounded. Hence:

an(X) = ch = Z(cy — 1) +a,(Y)=a —a, +a,(Y)

Write an(X) = ¢" + €,(X) and a,(Y) = ¢" + €,(Y). Then
al —a, = e,(X) — e, (Y) and

af +a, =an(Y) +al.

Our estimates imply that €,(X)/an(Y) and €,(Y)/an(Y) tend to zero with
n, where €, means either €,(X) or €,(Y). Moreover a! is bounded. It

follows that N N
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The theorem follows.



